Versuch: Wechselstromnetzwerke

Ziel: Untersuchung des Übertragungsverhaltens von passiven Netzwerken

1. Grundlagen

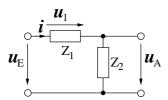


Abbildung 1: Spannungsteiler aus zwei \mathbb{Z}_1 \mathbb{Z}_2 \mathbb{Z}_2 \mathbb{Z}_4 Impedanzen \mathbb{Z}_1 und \mathbb{Z}_2

Bei den im Versuch zu untersuchenden Wechselstromnetzwerken handelt es sich eigentlich um einfache Spannungsteiler, die aus zwei Impedanzen Z_1 und Z_2 aufgebaut sind (Abb. 1). Die Impedanzen können dabei aus ohmschen Widerständen R, Kondensatoren C oder einer Parallelschaltung von R und C bestehen, d.h. $Z_i = R_i$, $Z_i = \frac{1}{j\omega C_i}$ oder $Z_i = (1/R_i + j\omega C_i)^{-1}$. Bei einer sinusförmigen Eingangsspannung

$$u_e(t) = \Re(\mathbf{u}_e(t)) = \Re(\hat{u}_e e^{j\omega t + \phi}) = \hat{u}_e \cos(\omega t + \phi) \tag{1}$$

erhält man in komplexer Darstellung somit einfach

$$\mathbf{u}_a = \frac{Z_2}{Z_1 + Z_2} \mathbf{u}_e \quad \text{und} \quad \mathbf{u}_e = (Z_1 + Z_2) \mathbf{i} \quad . \tag{2}$$

Messgrößen sind dann das Amplitudenverhältnis $|\mathbf{H}(\omega)| = |\hat{u}_a/\hat{u}_e|$ und die Phasenverschiebung

$$\phi = \arctan\left(\frac{\Im(Z_1 + Z_2)}{\Re(Z_1 + Z_2)}\right) . \tag{3}$$

Für den Hochpass ist $Z_1 = \frac{1}{j\omega C}$ und $Z_2 = R$, so dass

$$\mathbf{H}(\omega) = \frac{R}{R + 1/j\omega C} = \frac{j\omega RC}{1 + j\omega RC} \ . \tag{4}$$

Mit der Grenzfrequenz

$$\omega_g = 2\pi f_g = \frac{1}{RC} \tag{5}$$

folgt

$$|H(\omega)| = \frac{\omega RC}{\sqrt{1 + \omega^2 R^2 C^2}} = \frac{\omega/\omega_g}{\sqrt{1 + \omega^2/\omega_g^2}}$$
 (6)

$$\phi = \arctan\left(\frac{1}{\omega RC}\right) = \arctan(\omega_g/\omega)$$
(7)

2. Aufbau und Durchführung

Für Z₁ =R= 1 k Ω und Z₂ =C= 150 nF ist die Grenzfrequenz $\omega_g=1/RC\approx 6666\,\mathrm{Hz}$ (d.h. $f_g\approx 1.06\,\mathrm{kHz}$); entsprechend wurde die Eingangsfrequenz mit einem Funktionsgenerator im Bereich 0.1-100 kHz variiert. Die Amplituden der Eingangs- und Ausgangsspannung u_e und u_a , sowie die Zeitdifferenz T_d zwischen den Nulldurchgängen dieser Spannungen wurden mit einem Oszilloskop vermessen, wobei die Ablesegenauigkeit etwa 0.05 cm betrug. Bei Variation der Frequenz änderte sich die Eingangsspannung etwas, was gegebenenfalls durch Nachregeln der Amplitude auf $u_e=2.0\,\mathrm{V}$ ausgeglichen wurde.

f (Hz)	Δf (Hz)	u_e (V)	Δu_e (V)	u_a (V)	Δu_a (V)	T_d (ms)	$\Delta T_d \; (\mathrm{ms})$
100	1	2.00	0.05	0.17	0.05	2.4000	0.10000
200	1	2.00	0.05	0.34	0.05	1.1000	0.05000
500	1	2.00	0.05	0.72	0.05	0.3750	0.02500
1000	1	2.00	0.05	1.35	0.05	0.1300	0.00500
1500	1	2.00	0.05	1.50	0.05	0.0675	0.00250
2000	1	2.00	0.05	1.80	0.05	0.0400	0.00250
5000	1	2.00	0.05	1.95	0.05	0.0075	0.00050
10000	1	2.00	0.05	2.00	0.05	0.0020	0.00025
20000	1	2.00	0.05	2.00	0.05	0.0005	0.00025
50000	1	2.00	0.05	2.00	0.05	0.0000	0.00025
100000	1	2.00	0.05	2.00	0.05	0.0000	0.00025

Tabelle 1: Messdaten für den Hochpass mit $R=1 \text{ k}\Omega$ und C=150 nF

3. Auswertung und Diskussion

Aus diesen Messdaten kann man das Übertragungsverhältnis

$$H = \frac{u_a}{u_e}$$
, $\Delta H = \sqrt{\left(\frac{\Delta u_a}{u_e}\right)^2 + \left(\frac{u_a \Delta u_e}{u_e^2}\right)^2}$

und die Phasenverschiebung

$$\phi = 2\pi \frac{T_d}{T} = 2\pi f T_d$$
, $\Delta \phi = 2\pi \sqrt{(f\Delta T_d)^2 + 2(T_d\Delta f)^2}$

bestimmen. Die Phasenverschiebung ϕ wurde mit dem Faktor $180/\pi$ in Winkelgrade umgerechnet; mittels

$$H_{\rm db} = 20 \cdot \log_{10}(H) , \qquad \Delta H_{\rm db} = \frac{20}{\ln(10)} \frac{\Delta H}{V}$$

f (Hz)	ϕ (deg)	$\Delta \phi \text{ (deg)}$	H	ΔH	H (dB)	$\Delta H \text{ (dB)}$
100	86.40	3.70	0.09	0.03	-21.16	2.49
200	79.20	3.62	0.17	0.03	-15.39	1.30
500	67.50	4.50	0.36	0.03	-8.81	0.64
1000	46.80	1.80	0.68	0.03	-3.41	0.39
1500	36.45	1.35	0.75	0.03	-2.50	0.36
2000	28.80	1.80	0.90	0.03	-0.92	0.32
5000	13.50	0.90	0.97	0.03	-0.22	0.31
10000	7.20	0.90	1.00	0.04	0.00	0.31
20000	3.60	1.80	1.00	0.04	0.00	0.31
50000	0.00	4.50	1.00	0.04	0.00	0.31
100000	0.00	9.00	1.00	0.04	0.00	0.31

Tabelle 2: Übertragunsfaktor und Phasenverschiebung des Hochpasses mit $R{=}~1\,\mathrm{k}\Omega$ und $C{=}~150\,\mathrm{nF}$

wurde das Übertragungsverhältnis in dB umgerechnet. Die Abbildungen 2 und 3 zeigen die gemessenen Übertragungsfaktoren und Phasenverschiebungen als Funktion der Frequenz. Frequenzen oberhalb der Grenzfrequenz werden praktisch ungehindert an den Ausgang übertragen, während kleinere Frequenzen mit abnehmender Frequenz zunehmend gedämpft werden. Hohe Frequenzen werden praktisch ohne Phasenverschiebung übertragen, während sich diese bei kleinen Frequenzen 90 Grad nähert. Die Grenzfrequenz f_g , bei der das Amplitudenverhältnis auf $u_a/u_e=1/\sqrt{2}$ abnimmt, liegt wie erwartet etwas über 1 kHz.

Für den Vergleich mit der Theorie bietet sich die Darstellung als Funktion von ω/ω_g an, da sich dann gemäß der Beziehungen (6) und (7) universelle normierte Kurven ergeben. Die Abbildungen 4 und 5 zeigen die gemessenen Werte im Vergleich zu diesen Übertragungskurven, wobei Übereinstimmung im Rahmen der Messfehler zu beobachten ist. Deutlich sind die typischen Charakteristika des Hochpasses zu erkennen: unterhalb der Grenzfrequenz (in dieser Darstellung 1) steigt der Übertragungsfaktor mit 20 dB/Dekade an, bei der Grenzfrequenz ist $H_{\rm dB}=-3\,{\rm dB}$ und erreicht oberhalb 0 dB. Die Phase verläuft von 90° zu 0°, wobei bei der Grenzfrequenz gerade 45° erreicht werden.

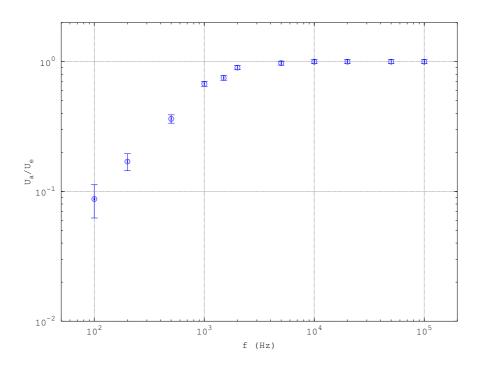


Abbildung 2: Übertragungsverhalten des Hochpasses

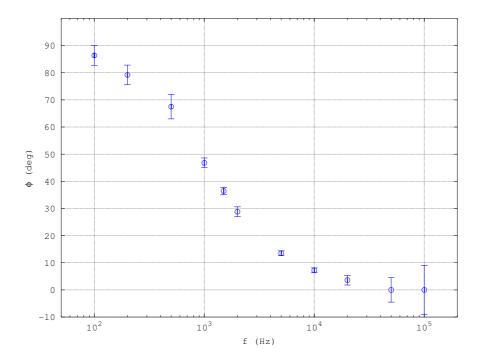


Abbildung 3: Phasenverschiebung des Hochpasses

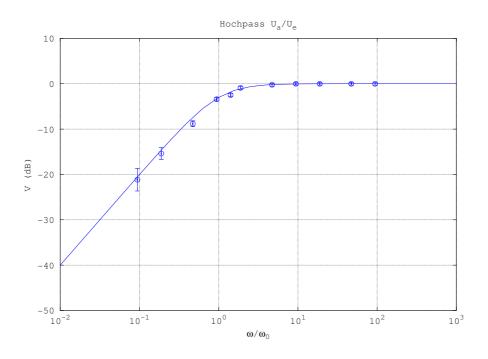


Abbildung 4: gemessenes und berechnetes Übertragungsverhältnis des Hochpasses als Funktion von ω/ω_g

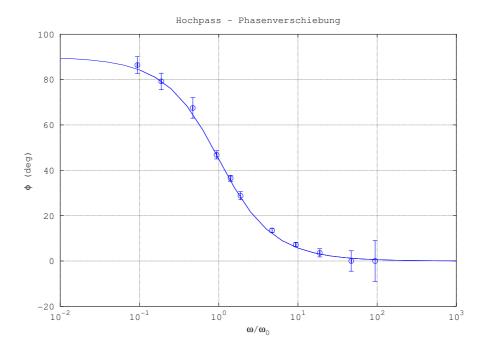


Abbildung 5: gemessene und berechnete Phasenverschiebung des Hochpasses als Funktion von ω/ω_g