Mogelzettel: Deskriptive Statistik

Betrachtet wird eine **Grundgesamtheit** quantitativer Daten $\{x_1, x_2, \dots x_N\}$, die *alle* möglichen Daten¹ enthält. Dieser unhandliche Datensatz wird durch "typische" Zahlen charakterisiert.

Arithmetischer Mittelwert:

Entsprechend kann der Mittelwert abgeleiteter Größen $f(x_i)$ (z.B. Kugelvolumina für gegebene Radien) definiert werden:

$$\langle f(x) \rangle := \overline{f(x)} := \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Klasseneinteilung

Bei einer großen Anzahl von Werten wird häufig mit einer Klasseneinteilung und Histogrammen gearbeitet. Dies erfolgt oft bereits bei der Datenerhebung.

Klassen: disjunkte, aufeinanderfolgende Intervalle, dh. $[x_i^u, x_i^o)$ oder $(x_i^u, x_i^o]$ $i=1,\dots,k$

Klassenbreite: $\Delta x_i = x_i^o - x_i^u = x_{i+1}^u - x_i^u$

Als Repräsentant der Klasse wird oft die **Klassenmitte** (Intervallmitte) $x_i = \frac{x_i^o + x_i^u}{2}$ benutzt. Ist n_i die Anzahl der Werte in der i-ten Klasse, so definiert man:

$$N = \sum_{i=1}^{k} n_i$$
, $\overline{x} := \frac{1}{N} \sum_{i=1}^{k} n_i x_i$, $\overline{f(x)} := \frac{1}{N} \sum_{i=1}^{k} n_i f(x_i)$

was eigentlich nur bei symmetrischen Verteilungen korrekte Resultate liefert.

Alternativen zum arithmetischen Mittelwert:

Geometrisches Mittel: $\sqrt[]{\langle x \rangle_g} = \sqrt[n]{x_1 x_2 \cdots x_n}$ (wichtig für Wachstumsraten)

quadratisches Mittel: $\langle x \rangle_{\text{rms}} = \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}$ (z.B. Effektivwerte in der Elektrik)

harmonisches Mittel: $\langle x \rangle_{\rm h} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$

Im Alltag sind auch noch der **Median** (Wert in der Mitte) und der **Modus** (häufigster Wert) gebräuchlich.

¹also keine Stichprobe!

Neben dem Mittelwert ist auch die Breite der Verteilung wichtig, was auf die Varianz und Standardabweichung führt:

Varianz:
$$V(x) := \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \dots = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2 = \overline{x^2 - \overline{x}^2}$$

Standardabweichung:
$$\sigma = \sqrt{V(x)}$$
 (hat dieselbe Einheit wie x)

Details sind abhängig von der Verteilung, aber als Faustformel:

 σ ist eine typische Abweichung vom Mittelwert, Abweichungen um 2σ kommen vor, aber Abweichungen von mehr als 3σ sind verdächtig!

Alternative Breitenmaße:

In der Physik ist die **volle Halbwertsbreite** (FWHM)² gebräuchlich, da sie einfach zu bestimmen ist und für viele Verteilungen eine unmittelbare Berechnung von σ erlaubt (für Gaußverteilungen gilt: FWHM $\approx 2.35\sigma$).

Die zum Median gehörenden Breitenmaße sind die Quartile und Dezile; z.B. liegen beim unteren Quartil 25% der Daten darunter und 75% darüber, beim oberen Dezil liegen 90% darunter und 10% darüber.

Seltener: Spannweite
$$\max(x_i) - \min(x_i)$$
 und mittlere absolute Abweichung $\frac{1}{n} \sum_i |x_i - \overline{x}|$

höhere Momente:

m-tes (zentrales) Moment:
$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^m$$
 "Momentenentwicklung"

Höhere Momente werden in der Physik eher selten benutzt; Statistiker benutzen auch renormierte Versionen wie *Schiefe* und *Kurtosis*, mit von Autor zu Autor teilweise leicht abweichenden Definitionen.

Paare von Daten - Korrelation

Datensätze: $(x_1, y_1), ..., (x_n, y_n)$ (z.B. Größe und Gewicht)

Information über Zusammenhang zwischen den Größen liefert die Kovarianz:

$$\left| \operatorname{cov}(x,y) := \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) \right| = \dots = \overline{xy} - \overline{x} \, \overline{y}$$

> 0 falls tendenziell große x mit großen y auftreten

< 0 falls große x mit kleinen y auftreten (oder umgekehrt)

= 0 falls kein Zusammenhang besteht

Korrelationskoeffizient:
$$-1 \le \rho = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \le 1$$

Eine Korrelation sagt nicht notwendigerweise etwas über kausale Zusammenhänge aus! (Zahl der Störche / Geburtenrate)

Eine Verallgemeinerung auf k
 Variablen führt auf die $k \times k$ Kovarianzmatrix V_{ij} .

²Full Width at Half Maximum